

# Jet Propulsion Laboratory

California Institute of Technology

#### **CubeSat and Mobile Processors**

Steven M. Guertin steven.m.guertin@jpl.nasa.gov 818-321-5337 NASA/JPL

Acknowledgment:

This work was sponsored by: The NASA Electronic Parts and Packaging Program (NEPP)

To be presented by Steven M. Guertin at the NASA Electronics Technology Workshop, June 23-26, 2015.



#### **Outline**

- Processor/Microcontroller Review
- Collaborations
- MSP430
- PIC
- Atmel AT91SAM9G20
- Intel Atom E620
- Snapdragon (APQ8064)
- Future/Conclusions



#### **Motivation**

- Provide SEE and TID test data on processors and microcontrollers of interest for CubeSat and Small Missions
  - CubeSat Kit devices
  - Devices either flying or in designs being built
  - (and if enough interest, devices people would like to fly)
  - Future-looking devices
- Microcontroller focus is primarily on devices that are in designs right now – these are essentially the embedded market
- Microprocessor focus is on mobile devices where power is low and performance to power ratio is high



#### **Microcontroller Review**

- Review of CubeSat kits
- Review of NASA CubeSat parts lists
- Direct interaction with community members

|                   |              | Ser. | 1 Sat | \$  |
|-------------------|--------------|------|-------|-----|
| Device            | Manufacturer | Cub  | SEN   | Oth |
| MSP430F1611       | TI           | Х    |       |     |
| MSP430F1612       | TI           | Х    |       |     |
| MSP430F1618       | TI           | Х    |       |     |
| MSP430F2619       | TI           |      | Х     |     |
| MSP430FR5739      | TI           |      |       | Х   |
| C8051F120         | Silicon Labs | Х    |       |     |
| PIC24FJ256GA110   | Microchip    | Х    |       |     |
| dsPIC33FJ256GP710 | Microchip    | Х    |       |     |
| AT91SAM9G20       | Atmel        | Х    | Х     |     |
| AT91SAM7          | Atmel        | Х    |       |     |
| ATMEGA1281        | Atmel        | Х    |       |     |
| ATMEGA164P        | Atmel        |      | Х     |     |
| ATMEGA32U/8       | Atmel        |      | Х     | Х   |
| ATMEGA16U2        | Atmel        |      |       | Х   |
| Cortex-M3 MCU     | ARM/General  | Х    |       |     |
| Other ARM9        | ARM/General  |      | Х     | Х   |
| PX32A             | Parallax     | Х    | Х     |     |
| ColibriPXA270     | Intel/Marvel |      |       | Х   |
| Sitara AM3505     | TI           |      | Х     |     |
| Sitara AM3703     | TI           |      | Х     | Х   |

5

To be presented by Steven M. Guertin at the NASA Electronics Technology Workshop, June 23-26, 2015.



#### **Mobile Processor Review**

- Various CubeSats have flown with more capable processing
  - Usually C&DH is 8 or 16-bit MCUs, the "ARMs" are actually reduced capability Thumb<sup>™</sup> processors
  - AAUSat-3, CANX-2 used a 32-bit ARM processor
  - Phonesat ... flew ... phones (and newer iterations are flying more)
- Expect that as CubeSat programs continue, need for more processing will be important
- Key drivers same as for CubeSats in general
  - Small, low power, cheap
  - Generally accessible to low-budget environments (schools, R&D, etc.)



#### **Snapdragon/Atom Effort**

- We focused on cell phone processors primary player is ARM, with Intel trying to get Atom into play
- Avoid issues with closed architecture i.e. not using Apple A6/A7/etc. (This is still an issue with ARM.)
- Most common phone processor in high-end devices is Snapdragon, with Krait CPU (similar to ARM Cortex A15)
  - We are currently looking at Snapdragon 600 and Snapdragon 800 (both TSMC 28 nm – low power)
  - Prototyping equipment readily available
  - Being used in the hobby space
  - These devices are in high production ~18 months



#### **Collaborations**

- FPGA and Microprocessor Mitigation Working Group – Los Alamos National Lab – H. Quinn
  - Working to establish benchmarks:
  - compare effectiveness of mitigation
  - compare radiation hard to regular devices
  - general SEE sensitivity is secondary
- Intel device SEE evaluation with NAVSEA Crane
  - Working with Adam Duncan
  - See Austin's talk (yesterday) Info on crash and cache parity on Atom E3825
  - Crane has evaluated a couple methods for testing SEE performance of Atom devices
    - using this information to target our testing better
    - This has been a bit harder than anticipated



#### **MSP 430 Overview**

- Originally identified through CubeSat kits:
  - MSP430F1611, MSP430F1612, and MSP430F1618
  - SEL testing performed on 1611 and 1612 both devices show SEL, and 1618 is expected to as well (more later)
  - Limited SEE testing performed (SEL was primary focus)
  - TID testing performed on 1611 and 1612 both showed problems between 10 and 20 krad.
    - Our devices primarily failed because they could not be reprogrammed with our suite of test software.
    - Results may be different if we don't reprogram the DUT test pending
- Have also added MSP430FR5739
  - FRAM (expected to have better TID performance)
  - Epi (expected to have better SEL performance)
  - Has been tested for SEL and limited SEE



### SEE/SEL performance of MSP430FR5739

- Testing performed at TAMU on 6/18
- No SEL was observed
  - Exposed to 2x10<sup>6</sup>/cm<sup>2</sup> Au at 86 MeV-cm<sup>2</sup>/mg
  - Tested at 3.6V and 85C (both max)
    - 85C took out the UART
- We did observe permanent damage
  - ~1x10<sup>-5</sup>cm<sup>2</sup> at LET 86 –
     event not seen with 1.5x10<sup>6</sup> at LET 8.1
  - Device does not function
  - Cannot be reprogrammed ("Inconsistent configuration information, discard unit and replace")



SRAM SBU 1.E-07 1.E-08 1.E-08 1.E-09 0 2 4 6 8 LET MeV-cm2/mg)

10



#### SEL/SEE Results – MSP430 – 1611 and 1612

# SEL Characterization

- 0.05 A threshold
- LET<sub>TH</sub>~8 MeVcm<sup>2</sup>/mg
- Large  $\sigma$  by LET 20
- Not recovered by reset
- At about 1x10<sup>6</sup>/cm<sup>2</sup> (@ LET 86) test devices unprogrammable



–Error bars (nominal only) ~2σ,
–and include beam uncertainty



# **TID Testing of MSP 1611 & 1612**

- Test procedure: between irradiation, tested with characterization programs – requires being able to reprogram devices:
  - LED blinker
  - Flash memory test program (provided in MSP development kit)
  - Whetstone test program
- Test steps: 1, 2, 5, 10, and 20 krad(Si)
- Unbiased devices showed no degradation at 20 krad
- Some biased 1611 devices became unstable at 10 krad
  - some devices failed to be reprogrammable at 20k, but instead seemed to be running the TID test program (LED blinking)
- Upcoming test pending to perform TID testing without reprogramming.



#### **PIC Overview**

- PIC24 and dsPIC 33 devices have been tested for SEL, SEE, and TID
- Devices generally show relatively high SEL rate (about 10x higher than MSP430F1611)
  - No indication of damage
- TID performance (biased) is around 10krad(Si) with failures due to inability to reprogram.
  - Again, results may be different if we don't require reprogramming



#### **PIC TID**

- Performed unbiased testing of PIC24 and both biased and unbiased testing of dsPIC33
- Between irradiation, tested with characterization programs

   requires being able to reprogram devices:
  - Flash memory test program (provided in MSP development kit)
  - Whetstone test program
  - SRAM test program
- Test steps: 1, 2, 5, 10, 15, 20 and 50 krad(Si)
- Unbiased devices failed at 20-50 krad(Si) Failures due to inability to reprogram for post-rad evaluation.
- During biased testing, 2 out of 3 DUTs failed to reprogram at 10 krad(Si)
- Upcoming test pending to perform TID testing without reprogramming (address same problem as MSP).
  - And remaining biased TID test of PIC24 is planned.



#### SEE Testing – AT91SAM9G20

- AT91SAM9G20-EK
- Bypassed regulators and provided power directly to DUT
- Test programs
  - Debug tools direct OCM access
  - OCM write/read





#### AT91SAM9G20 SEL/SEE

- SEL monitored on 1V and 3.3V lines (limited at 200 and 300mA, respectively).
  - No significant changes (i.e. >20%) ever observed across all testing, tests performed at 85°C
  - No SEL (>1x10<sup>7</sup>/cm<sup>2</sup> at LET 86 MeV-cm<sup>2</sup>/mg)
- Observed reset/restart of processor these appear to always be functional (i.e. device communicates with debugger)
  - Observed crashes and resets with live code
  - Live code and debugging setup produce similar measurements
  - Reset did not always result in reliably running code without power cycle (may have cause lock up during reboot)



#### AT91SAM9G20 SBU/MBU

- Observed upsets in the on chip memory (OCM)

   with MBUs being obvious, but not in the same data word
  - Multiplicity of 1.1, 1.5, and about 5, at LET 2.3, 8.3, and 85, respectively.





#### **Intel Atom E620**

- Test Approaches considered
  - Operating system crash rate
  - Scan chain/register error rate
  - Cache bit sensitivity
- Focus has been on cache bit sensitivity
  - This is expected to enable worst case predictions for system errors
  - Can be compared to operating system crash rate easily, though our test operating system does not correlate to a flight-like system
- Capturing cache bit sensitivity has been elusive
  - Test system has been based video output
  - Have verified:
    - simple machine check handler does not report cache errors
    - machine check status register report not visible before crash
      - exploring improved machine check handler
- SEE Summary:
  - Verified no SEL, measured crash cross section for minimal test code



#### **Conga Test Board/Approach**

- Test System
  - Conga QA6/E620 processor cards
  - Mounted in a Conga MCB/Qseven board
- Processor is easily thinned (we have two at ~80 um)
- But board does not support UART
  - Problem for debug efforts







#### **Test Software Effort – E620**

- Working on approach using boot-loader (GRUB) to place custom code.
  - Custom code, using inline assembly and a limited amount of the c-code base for GRUB
- Have level 0 privilege
- Have been able to reroute exception handlers
- Have been able to read the Machine Check Status registers and clear them
- Our test board does not provide UART, so only IO thus far is keyboard & screen (working on this)
- Also working other approaches with collaborators



#### **E620 SEE Test Results**

- No SEL with effective LET of ~75 MeV-cm<sup>2</sup>/mg (room temperature, with >1x10<sup>7</sup>/cm<sup>2</sup>)
- Have observed crashes when testing with a couple beams
  - Have established functionality of primary approach, but thus far testing has only shown crashes/resets.



- Also tested by just going to BIOS screen.
  - Cross section for lockup in BIOS: ~<1x10<sup>-4</sup>cm<sup>2</sup> LET 30 MeV-cm<sup>2</sup>/mg



## E620 SEE Test Concepts/Efforts/Results

- Cache Testing
  - Caches are nominally operated in write-back mode
  - Have operated write-dwell-read of caches
  - No upsets observed in cache testing (just crashes)
- Machine Check Handling
  - Have implemented the machine check exception
  - If machine check taken, code is restarted with a flag set to report the machine check
  - No machine checks observed
  - Machine checks for SEE upset modes may not be enabled
- Machine Check Reporting Registers
  - Tried polling of these registers
  - Unfortunately our test system has yet to report these before crashing still working



## **Snapdragon APQ8064 Overview**

- Using IFC6410 board
- Test Approaches considered
  - Operating system crash rate takes too long to boot
  - On-chip memory test
- Has been very difficult to obtain data on how to operate
  - Best material seems to be source code for open source OS
- On-chip memory test
  - We think the device has between 4 and 64kB of on chip memory
  - Trying to verify we have the right physical address... this work is on-going
  - We do have working control of the UART and can run more general codes
- Interesting tid-bit: the APQ8064 has an ARM7 helper processor that is part of the boot sequence
- SEE Summary:
  - Have verified no SEL, and have observed exceptions during Android boot (leading to restart and/or crash)
  - (WiFi only chip)



#### **Future Work**

- We are continuing test development on Atom and ARM device types
  - Have viable approach for inserting test code
  - May need to target different Atom board due to lack of UART
  - Video on Atom comes direct from part may be a cause of crash
- Planned Tests
  - TID test of MSP devices without reloading of test code
  - TID test of MSP430FR5379
  - TID of ATM91SAM9G20
  - SEE test of Intel Atom E620 (targeting cache performance)
  - SEE test of Qualcomm APQ8064 (targeting on-chip RAM and/or caches)



#### Conclusion

- NEPP is moving forward to identify current and potential future microcontrollers an microprocessors
  - Developing SEE and TID data to support various missions
  - Creating a basis of device response data for different families of devices
- Have tested several different devices to date
  - TID and SEE on TI MSP430 older 1611/12/18; and newer devices like FRAM/Epi MSP43FR5739
  - TID and SEE on PIC24 and dsPIC33
  - SEE testing on AT91SAM9G20
  - SEL and very limited SEE testing of Intel E620 and Qualcomm APQ8064
- Several tests coming up building general data around various architectures AT91SAM9G20 TID; more PIC TID, and SEE tests of Intel E620 and Qualcomm APQ8064
- Data workshop at NSREC in Boston 2015



#### End



## Cubesat Controller Survey

#### Reviewed many Cubesat system architectures

 Primary devices on this list: MSP430F1611, 1612, 1618; PIC24, dsPIC33; AT91SAM9G20; ATMEGA1281; C8051; AT91SAM7

| CubeSat Provider                | Processor                          | Availabil    | ity                  | Development                  |         |              |                      |
|---------------------------------|------------------------------------|--------------|----------------------|------------------------------|---------|--------------|----------------------|
|                                 |                                    |              |                      | Board                        |         |              |                      |
| Pumpkin                         | TI MSP430F1612                     | Yes          |                      | Yes                          |         |              |                      |
|                                 | TI MSP430F1611                     | Yes          |                      | Yes                          |         |              |                      |
|                                 | TI MSP430F1618                     | No           |                      | No                           |         |              |                      |
|                                 | Silicon Labs C8051F120             | Yes          |                      | Yes                          |         |              |                      |
|                                 | Microchip<br>PIC24FJ256GA110       | Yes          |                      | Yes                          |         |              |                      |
|                                 | Microchip<br>dsPIC33FJ256GP710     | Yes          |                      | Yes                          |         |              |                      |
| Tyvak                           | AT91SAM9G20 (ATMEL,                | Yes          |                      | Yes                          |         |              |                      |
| (Intrepid)                      | ARM9 Based)                        |              |                      |                              |         |              |                      |
| CubeSat Pro                     |                                    | ovider       |                      | Processor                    |         | Availability | Development<br>Board |
| GOMspa                          |                                    | ace          |                      | AT91SAM7 series              |         | Unknown      | Unknown              |
| (NanoMi                         |                                    | nd)          |                      | TMEL, ARM7 Ba                | ised)   |              |                      |
|                                 |                                    |              | ATMEL ATMEGA1281     |                              | Yes     | Unknown      |                      |
| Gausste                         |                                    | am           | TI MSP430 series     |                              | Yes     | Yes          |                      |
| (ABACU                          |                                    | JS)          |                      |                              |         |              |                      |
| ESL/IS                          |                                    | IS           | ARM Cortex-M3 MCU    |                              | Unknown | Unknown      |                      |
| (Cube Comp                      |                                    | puter)       |                      |                              |         |              |                      |
|                                 | ISIS (OE                           | BC)          | AT                   | 91SAM9G20 (AT<br>ARM9 Based) | MEL,    | Yes          | Yes                  |
| be presented by Steven M. Guert | in at the NASA ElectronicsyTechool | ogyeWorkshop | , Jun <mark>e</mark> | se Rumpkin Cube              | eSat    | Yes          | Yes                  |

# Microcontrollers from NEPP Review

- Atmel Microcontrollers
  - ATMEGA164P
  - ATMEGA32U4-(MU,RC-MU,RC-AU), ATMEGA328P(-PU), ATMEGA16U2
  - ATMEGA2560
  - Other ARM9?
- TI MSP430 16-bit Microcontroller
  - MSP430F2619, MSP430FR5739
- TI Other
  - OMAP3503/ARM Cortex-A8 (TI Sitara AM3505)
  - TI Sitara AM3703
- Microchip 32-bit Flash & Non-Flash Microcontroller
- Stamp9G20 processor
- ColibriPXA270 (Intel/Marvel ARM PXA270)
- Others:
  - Parallax PX32A



#### **A Packaging Example**

• We are finding some significant problems with some test boards, in terms of preparation for test...





#### **A Packaging Example**

- We are finding some significant problems with some test boards, in terms of preparation for test...
- We're also seeing this with TI Sitara eval kits







## **SEE Testing – PIC**

- Used Explorer 16 board from Microchip
- Test Devices:
  - PIC24FJ256GA110
  - dsPIC33FJ256GP71 0
- Using on-board regulators
- Two test programs
  - RAM write/read
  - Flash read/dwell



#### –Plug-In-Module – - PIC24

-- dsPIC33





#### SEL/SEE Results – MSP430 – 1611 and 1612

- SEL Characterization
  - 0.05 A threshold
  - LET<sub>TH</sub>~8 MeV-cm<sup>2</sup>/mg
  - Large  $\sigma$  by LET 20
- Not recovered by reset
- ISS event rate estimated between 2x10<sup>-5</sup> and 4x10<sup>-4</sup>/day
  - ~10x higher for GCR
- SRAM SBU (limited eval)
  - σ~4x10<sup>-8</sup>cm<sup>2</sup>/bit @ LET
     20 MeV-cm<sup>2</sup>/mg
  - Testing 2048 bytes



–Error bars (nominal only) ~2σ,
–and include beam uncertainty



### SEL in APQ8064

- Thinned parts to 80 μm
- Tested at TAMU with 25 MeV/amu Kr
  - $60^{\circ}$  Tilt LET<sub>eff</sub> = 57 & 75 (at sensitive region)
  - 3e7 exposure at LET 57, 4e7 exposure at LET 75
- Tested during booting of Android
  - Almost all SEL runs resulted in a "rebooting in 5 seconds" but reboot never succeeded
  - Reset worked in 9 out of 10 runs resulting in nominal operation (this rules out an SEL behavior).
- Board current @5.1V:
  - At start of run 330-350 mA
  - At end of run 160-500 mA (never above 350 for high exposure runs)
  - No significant increase



#### **SEE Testing of Snapdragon**

- Exposed IFC6410 board to Ar @ LET = 7 MeV-cm<sup>2</sup>/mg
- Test software was to monitor Android boot
  - Observed through UART error output
  - Provides information about boot behavior for first ~90 seconds
  - Takes ~5 seconds after power up to be activated
  - Provides interrupt/exception reporting
- Total exposure was 3e6 #/cm<sup>2</sup>
  - No damage observed
  - No evidence of high current modes (but LET was low)
  - But system had a hard time, and crashed often



## **SEL Cross Section**

- Used 0.25 A as threshold for SEL
- When heated, the SEL current trips on-board regulation
- Both points (slightly) higher σ for high T
- ISS event rate estimated between 2x10<sup>-4</sup> and 4x10<sup>-3</sup>/day

   ~10x higher for GCR
- dsPIC33 and PIC24 devices very similar





#### **PIC SEE Results**



- Flash Results
  - No upsets
     observed with
     6x10<sup>5</sup> /cm<sup>2</sup> ions at
     LET = 86
  - Limiting cross section of ~6x10<sup>-12</sup> cm<sup>2</sup>/bit
- SRAM Results
  - SEL behavior interfered at higher LETs